XENON Experiment
Development of Xe Dual Phase Prototype for Dark Matter Detection

Rick Gaitskell
Brown University, Department of Physics

see information at
http://www.astro.columbia.edu/~lxexe/XENON/
http://particleastro.brown.edu/
XENON Dark Matter Collaboration

Brown University
Richard Gaitskell Peter Sorensen

Columbia University
Elena Aprile (PI), Edward Baltz ,Alessandro Curioni Karl-Ludwig Giboni ,Chuck Hailey
,Lam Hui Masanori Kobayashi ,Pawel Majewski ,Kaixuan Ni

Rice University
Uwe Oberlack ,Omar Vargas

Princeton University
John Kwong, Changguo Lu, Kirk McDonald, Michael Niemack, Tom Shutt

Lawrence Livermore National Laboratory
William Craig

Stockholm University, Sweden
Vladimir Peskov
Very Typical WIMP Signal

- Low Thresholds Vital

Graph shows integrated event rates for $E > E_r$ for Xe (green), Ge (red) and S (blue).

Large nuclei enhanced by nuclear coherence, however, in reality $\ll A^2$...

\[\frac{dN}{dE_{r}} \]

Example cross-section shown is at current (90%) exclusion limits of existing experiments.

Xe WIMP rate for $E_r > 16$ keVr is

1. within factor 2 of maximum achievable rate ($E_r > 0$)
2. equivalent kg/kg to low threshold Ge detector
3. 5x better kg/kg than light nucleus (e.g. S in CS$_2$)

Graph: $m_W = 100$ GeV, $\sigma = 3.6 \times 10^{-42}$ cm2
XENON Event Discrimination: Electron or Nuclear Recoil?

Within the xenon target:

- Neutrons, WIMPS => Nuclear recoils
 => Scintillation, little ionisation
- , e-, , (etc) => Electron recoils
 => Scintillation, substantial ionisation

Ionisation electrons are drifted by field E_{GC} and extracted to the gas phase by field E_{AG}.

Due to increase in field E_{AG} around anode wires electrons increase kinetic energy => proportional scintillation via collisions with gaseous Xe.

The result is a large proportional light signal, which gives event-by-event discrimination against background.
Addition of CsI Photocathode at base

A Tertiary signal can be generated from absorbing primary photons into CsI photocathode

- Efficiency very good
 - Geometry Solid Angle
 - In Liq (No TIF transmission loss)
 - CsI QE 30%

Note: 16 keV nuclear recoil:
 \(\approx 200 \) photons before applying efficiencies for geometry and PMT QE.

Also ionization signal
 \(\approx 7-20 \) electrons
 (assumes high field 8 kV/cm)
SUMMARY OF PARAMETERS FROM EXISTING MEASUREMENTS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Zero Field 0 V/cm</th>
<th>High Field 8 kV/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAMMA EVENT - 1 keV electron equivalent energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV Photons</td>
<td>60-75 UV</td>
<td>20-30 UV</td>
</tr>
<tr>
<td>Electrons+Ions</td>
<td>[60-75 elec]</td>
<td>50-60 elec</td>
</tr>
<tr>
<td>NUCLEAR RECOIL EVENT - 1 keV recoil energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV Photons</td>
<td>12-18 UV</td>
<td>11.6 UV</td>
</tr>
<tr>
<td>Electrons+Ions</td>
<td>[12-18 elec]</td>
<td>0.4-1.2 elec</td>
</tr>
<tr>
<td>EFFECTIVE (NR/GAMMA) "QUENCHING FACTOR"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV Photons</td>
<td>20-25%</td>
<td>30-50%</td>
</tr>
<tr>
<td>Electrons+Ions</td>
<td>[20-25%]</td>
<td>0.8-2%</td>
</tr>
</tbody>
</table>

• Summary

 The ranges shown reflect spread in existing experimental measurements

 Note that the table considers signal from either 1 keV gamma or nuclear recoil event

 60 excitations / keV is equivalent to ~16 eV / excitation

 Zero field electron-ion #’s in [] are inferred, but are signal is not measured (extracted) directly
The XENON Experiment: Design Overview

- Dual Phase Liq/Gas Xe
- The XENON design is modular. Multiple 3D position sensitive LXeTPC modules, each with a 100 kg active Xe mass --> 1-tonne scale experiment.
- The 100 kg fiducial LXe volume of each module is shielded by additional 50 kg LXe. Active shield very effective for charged and neutral background rejection.

Currently - R&D towards 10 kg prototype.
Deployment goal: 100 kg
The Columbia LXeTPC - DM Prototype “0”

- **LXeGrit balloon telescope**
- 30 kg active Xe mass
- 20 x 20 cm² active area
- 8 cm drift with 4 kV/cm
- Charge and Light readout
- 128 wires/anodes ADC
- 4UV PMTs
XENON R&D Program

- Single Phase (Liq) + 2-10 cm Q drift (Qamp readout)
 - Testing different PMTs (Mech/QE/Elec)
 - Data for Light Collection Model
 (included Teflon reflectors)
 - Q drift good with teflon
 - Check Xe Contamination of components
 - DAQ Config.

- Dual phase, 1 cm Q drift (Prop scin readout)
 - PMT in gas
 - Study Electric Fields
 - Light Collection
 - Extra CsI Cathode

- Additionally
 - \(\approx 10 \text{ cm drift length measurements} \)
 - Demonstration of good electron drift with Teflon

- Also new setups being built at Brown, Princeton, Rice

- Construction of new Columbia 10 kg prototype underway
 - 7 PMTs
 - Pulse-tube cooled cryostat
Two Phase System (Columbia/ K. Ni)

^{207}Bi Primary Scintillation

^{207}Bi Proportional Light (Q)

Signal size increases by 6x after putting in Teflon
Single Phase

Just add Liq Xe & 662 keV ‘s
Xenon Purity

• Need to drift charge $>>1$ cm places most severe constraint on Xe purity

 Electronegative impurities <1 ppb level
 This is more stringent than levels required for observation of UV scintillation only

• Routinely achieving required levels

 Using SAES Getter (Also evaluating Ti arc getter)
 Chamber baked ~ 70 degC / pipes somewhat hotter

• Now evaluating contamination arising from various new components being introduced

 Steps to reduce contamination
 e.g. PMT bases -> Ceramic -> Kapton
 Cables replaced / PMT enclosures scrubbed
Hamamatsu PMT Selection (Baseline design)

<table>
<thead>
<tr>
<th>Model</th>
<th>Photo (not same scales)</th>
<th>Dimension & QE</th>
<th>Radioactive Background * [mBq/tube]</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6041</td>
<td></td>
<td>ø5 cm x 4 cm QE 5-8%</td>
<td>6000 mBq (Dominated by glass seal at base)</td>
<td>Specifically designed for ops in LiqXe TPC</td>
</tr>
<tr>
<td>R9288</td>
<td></td>
<td>ø5 cm x 4 cm QE 20%</td>
<td>150 mBq (Use of Kovar for most of base)</td>
<td>Evolution of 6041</td>
</tr>
<tr>
<td>R8520</td>
<td></td>
<td>(2.5 cm)² x 3.5 cm QE >20%</td>
<td>15 mBq</td>
<td>Square/quad anode-good fill factor. Columbia tested at 150K/4 atm</td>
</tr>
<tr>
<td>R8778</td>
<td></td>
<td>ø5 cm x 12 cm QE 26%</td>
<td>31 mBq (expect further improvement)</td>
<td>Designed for XMASS. Columbia tested at 150K/4 atm</td>
</tr>
</tbody>
</table>

* 1 mBq/ø5cm project goal
Advanced readout schemes - Summary

- **Charge readout**
 - GEMs (Rice)
 - MWPC (Princeton)

- **Light detectors**
 - Burle MCP (Brown)
 - Constructed new cryogenic housing for MCPs
 - Expect first test in Liq Xe in Aug
 - Hamamatsu low-background PMTs
 - Quartz windows, limited ceramics
 - Backgrounds ≈ 10 mBq/PMT - 1000 x better than standard.
 - LAAPD (Brown)
 - CsI (Columbia)

(A. Bondar et al., prepr. physics/0103082)
Removing Kr (+Ar) with chromatographic adsorption

- 85Kr in Xe
 - Xe Commercial grade 5-10 ppm Kr
 - Projection for 10^{-46} cm2 sensitivity needs 100 ppt Kr
 - Goal 1 ppt possible
- Chromatographic separation:
 - Kr moves through column faster
 - Use He (or Ne) carrier gas
- Princeton Group

![Graph showing adsorption constant](image)

Graph showing Xe & Kr separation in 30 stage charcoal column

- Xe, cycle=0.1 tau
- Kr at 0.9 of cycle
- Kr at 0.95 of cycle

Position in column

10 kg Dual Phase Prototype System

- Construction started of 10 kg dual phase system (assemble Aug ‘03)
- Temperature Control Using Pulse Tube Cooler
- Mechanical region for 7 x Ø5cm photodetectors - can accommodate different length PMTs discussed
- Fiducial / Drift Region ≥10 cm deep
- Note: Materials are not low background selected (this is next phase)
XENON Collaboration Summary

- Routinely Operating Two Xe Test Rigs at Columbia
 Additional rigs being constructed at Rice / Princeton / Brown

- Testing Components for 10 kg Prototype
 Baseline Design
 - Two phase demonstrated / necessary fields being studied
 - Collecting Data for Light Propagation Monte Carlos
 - PMT Selection - improvements in QE & radioactive backgrounds
 - Xe Purity - Q drift - routinely achieved (but often perturbed when inserting new components)

 Additional Technologies being investigated
 - Photodetectors / Alternative Q readout

- Building 10 kg Prototype
 Two phase with ≥7 PMTs and 10 cm drift
 Neutron measurement and gamma discrimination
 Test additional technologies/materials needed for low background version
Current & Next Generation Experiments & SUSY Theory Range

http://dmtools.brown.edu

Edelweiss (June 2003)
~0.25 event/kg/d

~1 event/kg/yr

~ 1 event/100 kg/yr